District Public School \& College,Depalpur

E-Learning Project
Summer Task

Tutorial Links,

Home Assignments, Work Sheets

> and Activities

Academic Session 2020-2021

Class: $7^{\text {th }}$
Student Name: \qquad
Father Name: \qquad

Exercise 2.2

- Web link https://youtu.be/Cv7198JPv-Q

1 .Find the additive inverse and multiplicative inverse of the following rational numbers

Example 1 :Write the additive inverse of the following rational numbers.
(i) 3

Solution:
To find the additive inverse of 3 , change its sign.
Additive inverse of 3 is -3
Check: $3+(-3)=3-3=0$
Example 2: Find the multiplicative inverse of the following rational
numbers.
(i) -4

Solution:
-4
To find the multiplicative inverse of -4 , write the numerator as denominator and denominator as numerator.
Multiplicative inverse of -4 is $1 /-4$
Check: $(-4) \times\left(-\frac{1}{4}\right)=1$
(i) $\quad-7$
(iv)
$\frac{1}{3}$
2. Simplify the following.
(ii) $\frac{5}{2}-\frac{3}{4}-\left(-\frac{1}{8}\right)$

$$
\begin{aligned}
& =\frac{5}{2}-\frac{3}{4}+\frac{1}{8} \\
& =\frac{20 \cdots+1}{8}=\frac{15}{8}=1 \frac{7}{8}
\end{aligned}
$$

(i) $\frac{1}{8}-\left(-\frac{5}{8}\right)$
(ix) $\left(-\frac{1}{2}\right)+\left(-\frac{1}{5}\right)+\frac{9}{10}$

Learn and Write Table of 6

Exercise 2.2

- Web link https://youtu.be/4Qjfwd54nQc
3.Simplify:
(ii) $-\frac{4}{5} \div\left(-\frac{6}{25}\right)$
$=-\frac{4}{5} \times\left(-\frac{25}{6}\right)$
$=\frac{(-4) \times(-25)}{5 \times 6}$
$=\frac{(-2) \times(-5)}{3}$
$=\frac{10}{3}$
(i) $\frac{8}{9} \times \frac{3}{4}$
(ix) $\frac{8}{125} \div \frac{16}{75}$

Learn and Write Table of 7

Exercise 2.3

- Web link https://youtu.be/FXXub-lg5nI

1 .Put the correct sign > , < or = between the following pairs of rational numbers.

Example :
(i) $\frac{1}{2}, \frac{3}{5}$

Solution:

Write other two rational numbers from the given rational numbers
such that their denominators must be equal.
$\frac{1}{2}=\frac{1 \times 5}{2 \times 5}=\frac{5}{10} \quad \frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10}$
Now compare the numerators of rational numbers with the same Denominators

$$
\begin{aligned}
& 5<6 \\
& \frac{5}{10}<\frac{6}{10} \\
& \frac{1}{2}<\frac{3}{5}
\end{aligned}
$$

Thus,
(i) $\frac{1}{2}, \frac{15}{20}$
(vii) $\frac{5}{7}, \frac{-1}{2}$

2. Arrange the following rational numbers in descending order.

Example: Arrange the rational numbers in descending order.
$\frac{1}{2}, \frac{2}{3}$ and $\frac{7}{8}$

Solution:

Step 1: The L.C.M of denominators 2, 3 and 8 is 24 .
Step 2: Rewrite the rational numbers with a common denominator as,
$\frac{1}{2}=\frac{1 \times 12}{2 \times 12}=\frac{12}{24} \quad \frac{2}{3}=\frac{2 \times 8}{3 \times 8}=\frac{16}{24} \quad \frac{7}{8}=\frac{7 \times 3}{8 \times 3}=\frac{21}{24}$
Step 3: Compare the numerators 12,16 and 21 and rearrange the rational numbers in descending order.
$21>16>12$
$\frac{21}{24}>\frac{16}{24}>\frac{12}{24}$ or $\frac{7}{8}>\frac{2}{3}>\frac{1}{2}$
Thus, arranging in descending order, we get

$$
\frac{7}{8}, \frac{2}{3}, \frac{1}{2}
$$

(i) $\frac{1}{2}, \frac{2}{3}, \frac{8}{9}$
(ii) $\frac{1}{6}, \frac{3}{4}, \frac{1}{2}$

Learn and Write Table of 8

Page 9 of 49

Exercise 2.3

- Web link https://youtu.be/ka4xGZoGpn0
3.Arrange the following rational numbers in ascending order.

Example :Arrange the rational numbers inascending order.
$\frac{1}{4}, \frac{2}{3}$ and $\frac{1}{12}$

Solution:

Step 1: The L.C.M of denominators 4,3 and 12 is 12.
Step 2: Rewrite the rational numbers with a common denominator as,

$$
\frac{1}{4}=\frac{1 \times 3}{4 \times 3}=\frac{3}{12} \quad \frac{2}{3}=\frac{2 \times 4}{3 \times 4}=\frac{8}{12} \frac{1}{12}=\frac{1 \times 1}{12 \times 1}=\frac{1}{12}
$$

Step 3: Compare the numerators 3, 8 and 1 and rearrange the rational numbers in ascending order.
$1<3<8$

$$
\frac{1}{12}<\frac{3}{12}<\frac{8}{12} \text { or } \quad \frac{1}{12}<\frac{1}{4}<\frac{2}{3}
$$

Thus, arranging in ascending order, we get
$\frac{1}{12}, \frac{1}{4}, \frac{2}{3}$.
(ii) $\frac{4}{5}, \frac{1}{10}, \frac{2}{15}$
(iii) $\frac{3}{8}, \frac{1}{4}, \frac{5}{6}$

Learn and Write Table of 9

Exercise 2.3

- Web link https://youtu.be/nWviprGydqQ

4.Prove that:

Example :Prove that

$$
\left(\frac{1}{4}+\frac{1}{2}\right)+\frac{1}{5}=\frac{1}{4}+\left(\frac{1}{2}+\frac{1}{5}\right)
$$

Solution:

$$
\begin{aligned}
\text { L.H.S } & =\left(\frac{1}{4}+\frac{1}{2}\right)+\frac{1}{5}=\left(\frac{1+2}{4}\right)+\frac{1}{5} \\
& =\frac{3}{4}+\frac{1}{5} \\
& =\frac{15+4}{20}=\frac{19}{20}
\end{aligned}
$$

$$
\begin{aligned}
\text { R.H.S } & =\frac{1}{4}+\left(\frac{1}{2}+\frac{1}{5}\right)=\frac{1}{4}+\left(\frac{5+2}{10}\right) \\
& =\frac{1}{4}+\frac{7}{10} \\
& =\frac{5+14}{20}=\frac{19}{20}
\end{aligned}
$$

L.H.S = R.H.S
(i) $\left(\frac{-1}{2}\right)+\frac{1}{3}=\frac{1}{3}+\left(-\frac{1}{2}\right)$
(iv) $-\frac{2}{3} \times\left(\frac{7}{8} \times \frac{9}{14}\right)=\left(-\frac{2}{3} \times \frac{7}{8}\right) \times \frac{9}{14}$

Learn and Write Table of 10

10	X	1	$=$	10	
10		2	$=$	20	
10		3	=	30	
10		4	$=$	40	
10		5	$=$	50	
10		6	$=$	60	
10		7	$=$	70	
10	X	8	$=$	80	
10	X	9	$=$	90	
10	X	10	$=$	100	
10	X	11	$=$	110	
10	X	12	$=$	120	

Unit 2

Review Exercise

1. Tick (\checkmark) the correct answer.

i- A number that can be expressed in the form of p / q, wherep, $q \in z, q$ $\neq 0$ is called:
(a) integer(b) rational number (c) whole number (d) all
ii-The additive inverse of $2 / 3$ is:
(a) $-2 / 3$
(b) $3 / 2$
(c) $1 / 3$
(d) $-3 / 2$
iii- The multiplicative inverse of $-4 / 7$ is:
(a) $4 / 7$
(b) $7 / 4$
(c) $-7 / 4$
(d) $1 / 7$
iv- $1 / 3+1 / 2=$ \qquad $:$
(a) $1 / 5$
(b) $1 / 6$
(c) $2 / 5$
(d) $5 / 6$
v- $2 / 5 \div(-4 / 5)=$ \qquad $:$
(a) 2
(b) -2
(c) $-1 / 2$
(d) $1 / 2$

2.Fill in the blanks.

(i) The \qquad consists of fractions as well as integers.
(ii) The rational numbers p / q and $-p / q$ are called \qquad inverse of each other.
(iii) A number that can be expressed in the form of where p and q are integers and $q \mathrm{~m}$? 0 is called the number.
(iv) 0 is called additive identity whereas 1 is called \qquad identity.
(v) The rational number 0 has no \qquad .
(vi) The \qquad inverse of a rational number is its reciprocal.

Unit 3

Decimals

- Introduction to Decimals
- Web link https://youtu.be/bnN6b90sIK0

Introduction

In the previous classes, we have learnt that a decimal consistsoftwo parts, i.e. a whole number part and a decimal part. To separatethese parts in a number, we place a dot between them which isknown as the decimal point.
Decimal point

Whole number part Decimal part
So, we can define a decimal; a number with a decimal point is called a decimal.

Q \# 1 : Define a Decimal with examples.

Ans:
\qquad
\qquad
\qquad
\qquad

Q \# 2 : From where the word decimal has been deduced and what it meant?

Ans:

\qquad
\qquad
\qquad
\qquad

Learn and Write Table of 11

Exercise 3.1

- Web link https://youtu.be/6TjovjLJ5DU

1. Convert the following decimals into rational numbers.

Example :Convert -1.375 to a rational number.
Solution:

$$
-1.375=-\frac{1375}{1000}
$$

250

Find the HCF of 1375 and 1000 .
(i) 0.36
(iii) $\mathbf{- 0 . 1 2 5}$

Learn and Write Table of 12

12			1	$=$	12	
1			2	$=$	24	
1			3	$=$	36	
1			4	$=$	48	
1			5	$=$	60	
1			6	$=$	72	
1			7	$=$	84	
1			8	$=$	96	
12			9	$=$	108	
12			10	$=$	120	
12			11	$=$	132	
12			12	$=$	144	

Exercise 3.2

- Web link https://youtu.be/7iARreGSouk

Example :
(i) $\frac{19}{25}$

$$
25 \begin{array}{r}
0.76 \\
\begin{array}{r}
190 \\
-175 \\
\hline 150 \\
-150 \\
\hline 0
\end{array}
\end{array}
$$

Thus, $\frac{19}{25}=0.76$ which is a terminating decimal.
(ii) $\frac{17}{45}$

Thus, $\frac{17}{45}=0.377 \ldots$ which is a recurring decimal.

1. Without actual division, separate the terminating and non-terminating decimals.
(i)

2. Express the following rational numbers in terminating decimals.
(v) $\frac{5}{1000}$
3. Express the following rational numbers in non-terminating decimals up to three decimal places.
(vi) $\frac{24}{22}$

Learn and Write Table of 13

13	X		1	$=$	13	
1			2	$=$	26	
1			3	$=$	39	
1			4	$=$	52	
1			5	$=$	65	
1			6	$=$	78	
1			7	$=$	91	
13	X		8	$=$	104	
13	X		9	$=$	117	
13	X		10	$=$	130	
13	X		11	=	143	
13	X		12	$=$	156	

Exercise 3.2

- Web link https://youtu.be/Wh0GTU2Rjx4
4.Round off the following decimals up to three decimal places.

Example :Round off the decimals up to 3-decimal places 2.3427
Solution: 2.3427
The digit next to 3 -decimal places is 7 (greater than 5). So, we increase the digit 2 by one. i.e. $2.3427 \approx 2.343$
(ii) 11.10365
(vi) 23.15147
(v) 0.74206

Learn and Write Table of 14

Unit 3

Review Exercise

1. Tick (\checkmark) the correct answer.

i- Two separate a whole number from fractional part in a decimal, we use the symbol:
(a) -
(b) .
(c) \%
(d) /
ii- If we round off the decimal 3.7461 upto two decimal places, we get:
(a) 3.74
(b) 3.7
(c) 3.84
(d) 3.75
iii- A rational number is terminating decimal, if its denominator has no prime factor other than:
(a) $2 \& 3$
(b) $3 \& 5$
(c) $2 \& 5$
(d) $2 \& 7$
iv- When we change 0.25 to the rational number, we get:
(a) $1 / 2$
(b) $1 / 3$
(c) $1 / 4$
(d) $1 / 7$

2. Fill in the blanks.

(i) A \qquad decimal may be recurring or non-recurring.
(ii) Two parts of decimal number separated by a dot is called the \qquad .
(iii) In terminating decimals, division \qquad after a finite number of steps.
(iv) In decimals, the term round off is used to leave the digits after the \qquad .
(v) A fraction will be terminating if the \qquad has 2 or 5 or both as factors.

Unit 4

- Web link https://youtu.be/q5IkIAruYFE
- Introduction to Exponents

Exponents/Indices

Identification of Base, Exponent and Value

We have studied in our previous class that the repeatedmultiplication of a number can be written in short form, usingexponent. For example,
$-7 \times 7 \times 7$ can be written as 7^{3}.
We read it as 7 to the powerof 3 where 7 is the base and 3 is the exponent or index. Similarly,

- 11×11 can be written as 11^{2}. We read it as 11 to the power of 2 where 11 is the base and 2 is the exponent.
From the above examples we can conclude that if a number " a " is multiplied with itself $n-1$ times, then the product will be $a n$, i.e.
an = axaxax \qquad x a (n-1 times multiplications of " a " with itself)
We read it as "a to the power of n" or "nth power of a" where "a" is the base and " n " is the exponent.
The exponent of a number indicates
us, how many times a number (base)
is multiplied with itself.
Example 1: Express each of the following in exponential form.
(i) $(-3) \times(-3) \times(-3)$

Solution:

(i) $(-3) \times(-3) \times(-3)=(-3)^{3}$

Example 2: Identify the base and exponent of each number.
(i) 13^{25}

Solution:

(i) 13^{25}
base $=13$
exponent $=25$

Exercise 4.1

- Web link https://youtu.be/IOEWAt6iRi8

1. Identify the exponent and base in each of the following.

Example :Identify the base and exponent of each number.
13^{25}

Solution:

13^{25}
base $=13$
exponent $=25$
(i) $(-1)^{9}$
(ii) $\mathbf{2}^{100}$
(iii) $(-19)^{22}$
2. Express each of the following in exponential form.

Example :Express each of the following in exponential form.
$(-3) \times(-3) \times(-3)$

Solution:

$(-3) \times(-3) \times(-3)=(-3)^{3}$
(i) $5 \times 5 \times 5 \times 5$
(iii) $p \times p \times p \times p \times p$

Learn and Write Table of 15

Exercise 4.1

- Web link https://youtu.be/YOW327zBL_M

Example :-53
Solution:
$-5^{3}=(-5) \times(-5) \times(-5)$
$=(+25) \times(-5)$
$=-125$
Thus, $-5^{3}=-125$
3. Prove that:
(i) $(5)^{3}=125$
(ii) $(-1)^{11}=-1$
4. Express each rational number using an exponent.
(i) 121
(ii) 81

Learn and Write Table of 16

16	X	1	$=$	16	
16	X	2	$=$	32	
16	X	3	$=$	48	
16	X	4	$=$	64	
16	X	5	$=$	80	
16	X	6	$=$	96	
16	X	7	$=$	112	
16	X	8	$=$	128	
16	X	9	$=$	144	
16	X	10	$=$	160	
16	X	11	$=$	176	
16	X	12	$=$	192	

Exercise 4.2

- Web link https://youtu.be/uJLbpIXHd5Y

1. Simplify the using the laws of exponent into the exponential form.

Example: $5^{3} \times 5^{4}$
Solution:

$$
\begin{aligned}
5^{3} \times 5^{4} & =5^{3+4} \\
& =5^{7}
\end{aligned}
$$

(i) $(-4)^{5} \times(-4)^{6}$
(ii) $m^{3} \times m^{4}$
2. Verify the following by using the laws of exponent.

Example: $(-3)^{3} \times(-2)^{3}$
Solution:
$=(-3)^{3} \times(-2)^{3}$
$=[(-3) \times(-2)]^{3}=[6]^{3}$
(i) $(3 \times 5)^{4}=3^{4} \times 5^{4}$
(ii) $(7 \times 9)^{8}=7^{8} \times 9^{8}$

Learn and Write Table of 17

17	X	1	$=$		
17	X	2	$=$	34	
17	X	3	=	51	
17	X	4	$=$	68	
17	X	5	$=$	85	
17	X	6	$=$	102	
17	X	7	$=$	119	
17	X	8	$=$	136	
17	X	9	$=$	153	
17	X	10	$=$	170	
17	X	11	$=$	187	
17	X	12	$=$	204	

Exercise 4.3

- Web link https://youtu.be/My91trILEkc

1. Simplify

Example: $8^{11} \div 8^{4}$
Solution:
$8^{11} \div 8^{4}=8^{11-4}$

$$
=8^{7}
$$

(i) $\mathbf{2}^{\mathbf{7}} \div \mathbf{2}^{\mathbf{2}}$
(ii) $(-9)^{11} \div(-9)^{8}$

2. Prove that

Example: $(14)^{11} \div(63)^{11}$
Solution:
$=\left(\frac{14}{63}\right)^{11}$
$=\left(\frac{2}{9}\right)^{11}$
(i) $2^{4} \div 7^{4}=\left(\frac{2}{7}\right)^{4}$

Learn and Write Table of 18

		1	$=$		
		2	$=$	36	
		3	$=$	54	
		4	$=$	72	
		5	$=$	90	
		6	$=$	108	
1		7	$=$	126	
18	X	8	$=$	144	
18	X	9	$=$	162	
18	X	10	$=$	180	
18	X	11	$=$	198	
18	X	12	$=$	216	

Exercise 4.4

- Web link https://youtu.be/fy9iqDhfUZg

1. Express the following as single exponents.

Example: $\left(3^{4}\right)^{5}$
Solution:
$=3^{4 \times 5}$
$=3^{20}$
(i) $\left(2^{3}\right)^{5}$
(ii) $\left(10^{2}\right)^{2}$
(iii) $\left(-3^{4}\right)^{5}$

Learn and Write Table of 19

19	X	1	$=$	19	
19	X	2	$=$	38	
19	X	3	=	57	
19	X	4	$=$	76	
19	X	5	$=$	95	
19	X	6	$=$	114	
19	X	7	$=$	133	
19	X	8	$=$	152	
19	X	9	$=$	171	
19	X	10	$=$	190	
19	X	11	$=$	209	
19	X	12	$=$	228	

Exercise 4.4

- Web link https://youtu.be/JntY8VkMFwQ

Example: $\left[\frac{3}{4}\right]^{-3}$

Solution: (i) $\left(\frac{3}{4}\right)^{-3}$
$=\frac{1}{\left(\frac{3}{4}\right)^{3}} \quad \because a^{-m}=\frac{1}{a^{m}}$
$=\frac{1}{3^{3} / 4^{3}}=\frac{4^{3}}{3^{3}}=\left(\frac{4}{3}\right)^{3} \quad$ Thus. $\left(\frac{3}{4}\right)^{-3}=\left(\frac{4}{3}\right)^{3}$
2. Change the following negative exponents into positive exponents.
(i) $(12)^{-3}$
(ii) $(-a)^{-2}$
3. Evaluate the following expressions.
(i) $\left(1^{2}\right)^{3} \times\left(2^{3}\right)^{2}$

Learn and Write Table of 20

20	X	1	$=$		
20	X	2	$=$		
20		3	$=$	60	
20		4	$=$	80	
20	X	5	$=$	100	
20	X	6	$=$	120	
20	X	7	$=$	140	
20	X	8	$=$	160	
20	X	9	$=$	180	
20	X	10	$=$	200	
20	X	11	$=$	220	
20	X	12	$=$	240	

Unit 4

Review Exercise

Q\# I: Tick (\checkmark) the correct answer.
i- $3^{\text {rd }}$ power of 5 can be written as:
(a) 5^{3} (b) $5^{4}(c) 5^{5}$
(d) 5^{6}
ii- $\left(3^{0}+2^{0}\right) \div 7^{0}=$?
(a) $7 / 5$
(b) $1 / 2$
(c) $5 / 7$
(d) 2
iii- The reciprocal of $\left[\frac{q}{p}\right]^{-m}$ is:
(a) $\left[\frac{\mathrm{p}}{\mathrm{q}}\right]^{\mathrm{m}}$
(b) $\left[\frac{q}{p}\right]^{m}$ (c) $\left[\frac{1}{p}\right]^{-m}$
(d) $\left[\frac{1}{q}\right]^{-m}$
iv- $(-a)^{\mathrm{n}}$ is negative. If n is an \qquad integer.
(a) prime
(b) even
(c) composite
(d) odd
$v-a^{m} \div a^{n}=$?
(a) a^{m+1}
(b) $a^{m n}$
(c) a^{m-n}
(d) $a^{m / n}$

Q\# 2: Fill in the blanks.
(i) $5 \times 5 \times 5 \times 5$ can be written in exponential form as \qquad .
(ii) $a^{n} \times b^{n}=$ \qquad .
(iii) $\mathrm{a}^{\mathrm{n}} / \mathrm{b}^{\mathrm{n}}==$ \qquad -
(iv) Any non-zero rational number with \qquad exponent
equals to 1 .
(v) $-\mathrm{a}^{\mathrm{n}}$ is positive, if ' n ' is an \qquad integer.

Unit 5

- Web link https://youtu.be/-IDB5nbEps0

- Introduction to Square Roots of Positive numbers

Introduction

In previous classes, we have learnt that the area of a squarecan be calculated by multiplying its length by itself as shown below.
Area of the square $=$ length \times length
$=x \times x$
$=x^{2}$
It means x^{2} is an area of a square whose side
length is x or simply
we can say that " x^{2} is the square of x ". i.e.
The square of $x=x^{2}$
Thus, the square of a number can be defined as:
"The product of a number with itself is called its square."

Perfect Squares

A natural number is called a perfect square, if it is the squareof any natural number.
To make it clear, let us find the squares ofsome natural numbers.
$1^{2}=1 \times 1=16^{2}=6 \times 6=36$
$2^{2}=2 \times 2=47^{2}=7 \times 7=49$
$3^{2}=3 \times 3=98^{2}=8 \times 8=64$
$4^{2}=4 \times 4=169^{2}=9 \times 9=81$
$5^{2}=5 \times 5=2510^{2}=10 \times 10=100$ and so on
Here, " 1 is the square of 1 ", " 4 is the square of 2 ", " 9 is the square of $3^{\prime \prime}$ and so on. It can be noticed that all these are natural numbers.So, these are perfect squares which can be represented by drawingdots in squares.

When we have a number of rows equal to number of dots in a row, then it shows a perfect square

5.2 Square Roots

5.2.1 Defining square root of a natural number and recognizing its notation

The process of finding the square root is an opposite operation of "squaring a number". To understand it, again we find some perfect squares.

$$
\begin{aligned}
& 2^{2}=4(2 \text { squared is } 4) \\
& 5^{2}=25(5 \text { squared is } 25) \\
& 7^{2}=49(7 \text { squared is } 49)
\end{aligned}
$$

These equations can also be read as, " 2 is the square root of 4 ", " 5 is the square root of 25 " and " 7 is the square root of 49 ".

Similarly, we can find the square root of any square number. For this purpose, we use the symbol " $\sqrt{ }$ " to represent a square root, i.e. $\sqrt{x^{2}}=x$ where " $\sqrt{ }$ " is called redical sign. Here, x^{2} is called redicand.

If x is any number that can be written in the form of $x=y^{2}$, then x is called the square of y and y itself is called the square root of x.

Exercise 5.1

- Web link https://youtu.be/iH-tvHXNk6w

1. Find the squares of the following numbers.

Example :Find square of 6.

Solution: $=6^{2}$

$$
\begin{aligned}
& =6 \times 6 \\
& =36
\end{aligned}
$$

(i) 6
(ii) 5
2. Test whether the following numbers are perfect squares or not.

Example :Check whether the number are perfect square or not. 3969

Solution:

The prime factors of $3969=$ $\lfloor 3 \times 3\rfloor \times\lfloor 3 \times 3\rfloor \times\lfloor 7 \times 7$

3	3969
3	1323
3	441
3	147
7	49
	7

(i) 59
(ii) 625

Q \# 3 : Without solving, separate the perfect squares of even and odd numbers.
Example :Without solving, separate the perfect squares of even
numbers and odd numbers
(i) 3481

Solution:
3481
The square of an odd number is also odd.
Q 3481 is the square of an odd number.
(i) 441
(ii) 144

Learn and Write Table of 6

Exercise 5.1

- Web link https://youtu.be/jt_LTwdyCYO

Example :0.02

Solution:

$(0.02)^{2}=(0.02) \times(0.02)=\frac{2}{100} \times \frac{2}{100}=\frac{4}{10000}=0.0004$
0.0004 is smaller than 0.02 i.e. $0.0004<0.02$.It means the square of a decimal less than ' 1 ' is always smaller thanthe given decimal
4. Find the squares of proper fractions. Also compare them with itself.
(i) $\frac{3}{4}$
5. Find the squares of decimals and compare them with itself.
(i) 0.4
(ii) 0.6

Learn and Write Table of 7

Exercise 5.2

- Web link https://youtu.be/VQnl_5Fkzlw

Example 1: Write the square root of 900.

Solution:

- Find the prime factors of 900 .

Factorization of $900=2 \times 2 \times 3 \times 3 \times 5 \times 5$

- Take square root on both sides.

$$
\sqrt{900}=\sqrt{2 \times 2 \times 3 \times 3 \times 5 \times 5}
$$

Write them as a pair of prime factors of a perfect square.

$$
\begin{gathered}
\sqrt{900}=\sqrt{2 \times 2} \times \sqrt{3 \times 3} \times \sqrt{5 \times 5} \\
\sqrt{900}=\sqrt{2^{2}} \times \sqrt{3^{2}} \times \sqrt{5^{2}}
\end{gathered}
$$

$\sqrt{900}=2 \times 3 \times 5$
$\sqrt{900}=30$
Hence, 30 is the square root of 900 .

1. Find the square roots of the following numbers.
(i) 4
2. Find the square roots of the following numbers by primefactorization.
(i) 144

Learn and Write Table of 8

